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A distinctive property of Lagrangian accelerations in geostrophic turbulence is that
they are governed by the large and intermediate scales of the flow, both in time
and space, so that the inertial part of the dynamics plays a much larger role than
in three-dimensional turbulence where viscous effects are stronger. For the case
of geostrophic turbulence on a β-plane, three terms contribute to the Lagrangian
accelerations: the ageostrophic pressure gradient which often is the largest term, a
meridional acceleration due to the β-effect, and an acceleration due to horizontally
divergent ageostrophic motions. Both their spectral characteristics and patterns in
physical space are studied in this paper. In particular the total accelerations field has
an inertial spectrum slope which is identical to the geostrophic velocity field inertial
slope.

The accelerations gradient tensor is shown to govern the topology of quasi-
geostrophic stirring and transport properties. Its positive eigenvalues locate accurately
the position of extrema of potential vorticity gradients. The three-dimensional distri-
bution of tracer gradients is such that the vertical distribution is entirely constrained
by the horizontal one, while the reverse is not true. We make explicit analytically
their dependence on the three-dimensional accelerations gradient.

1. Introduction
This study addresses the characteristics of the Lagrangian accelerations in aniso-

tropic (nearly horizontal) flows, motivated by the property of two-dimensional turbu-
lent flows that their Lagrangian accelerations are mostly determined by the large and
intermediate scales of motion, both in time and in space. Viscous effects thus play
no significant role in these aspects of the dynamics. Lagrangian accelerations control
the spatially local topology of tracer transport and the global statistics of turbulent
dispersion.

For stationary two-dimensional turbulence, the Lagrangian velocity correlation
function is R(τ) = 1

2
E〈u(t) · u(t + τ)〉, where 〈 〉 designates time and ensemble mean

over particle trajectories, with 2E = 〈|u|2〉 and u = (u, v). The Lagrangian microscale
Tm and integral time scale TL (Taylor 1921) are defined as

T−2
m = − 1

2
d2R/dτ2 = 1

4
E〈|du/dt|2〉,

TL =

∫ ∞
0

R(τ)dτ.
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Tm is therefore related to the mean square of the Lagrangian acceleration, γL =
du/dt, and the global diffusion coefficient is K = 2ETL, provided the integral defining
TL converges. For two-dimensional inviscid dynamics, an approximate relation be-
tween Tm and TL must exist since enstrophy conservation implies that the dynamics
is characterized by a single time scale (Babiano et al. 1987). The Lagrangian velocity
frequency spectrum normalized by the energy, S(ν) where ν is the frequency, is the
Fourier transform of the correlation function R(τ). The micro- and integral time scales
can be re-expressed as

T−2
m = 4π2

∫ ∞
0

S(ν)ν2dν,

TL = 1
2
S(0).

Thus the micro-time scale is well defined only if the Lagrangian velocity frequency
spectrum decreases faster than ν−3 at large ν, such that the variance of the Lagrangian
accelerations will be finite. Furthermore Tm will be independent of Reynolds number
if this spectrum decrease occurs by inertial dynamics. The ratio α = TL/Tm depends
upon the specific shape of S(ν) and is of order unity if S(ν) falls steeply enough.

The key point is that the steepness of the Lagrangian velocity spectrum for two-
dimensional dynamics leads to a proportionality between the inverse square of the
Lagrangian integral time scale and the variance of Lagrangian acceleration,

T−2
L = α−2 1

4E
〈|γL|2〉, (1.1)

where the constant α is of order unity for flow regimes of a moderately anisotropic
turbulence (i.e. precluding persistent jets).

Examples of Lagrangian velocity spectra observed in oceanic data and obtained
in numerical simulations of strong geostrophic turbulence on a β-plane are shown
in figure 1 (Rupolo et al. 1996). They confirm two characteristic features. The first
feature is the existence of a plateau-like shape at the lowest frequencies near ν = 0
so that TL is well-defined. The second and most relevant feature for the present
study is the steep decrease at high frequencies S(ν) ∝ ν−p with p > 3, so that Tm is
well-defined†. The computed values for α are 0.86 for the oceanic data and 1.06 for
the numerical simulation of figure 1.

The steepness of the Lagrangian velocity spectrum found in the numerical sim-
ulations implies that Lagrangian accelerations exhibit no significant viscous effects
and are governed by low and intermediate frequencies. These results differ markedly
from those of three-dimensional turbulence, where numerous studies of pressure-
gradient fluctuations have been conducted since the original investigation of Taylor
(1935), in order to determine the non-viscous part of the Lagrangian accelerations.
For high enough Reynolds numbers, the pressure field was originally thought to be
closely related to the dispersion of marked particles, e.g. Batchelor (1951). However,
in three-dimensional turbulence the decorrelation of the pressure gradient field takes
place at much smaller separation distances than for the velocity field, and is mainly
determined by the smallest-scale disturbances (Borgas & Sawford 1991).

† The value of p is ≈ 5.3 for the numerical simulation (dotted line), while it is ≈ 3.3 for the
narrower frequency range resolved by the oceanic data of figure 1 (continuous line); no effort has
been made to match the simulation to the observational context, although we note that the slope p
is ≈ 4.3 for the numerical simulation if we restrict the fit to the same range of frequencies as those
resolved in the oceanic data (see also Babiano, Basdevant & Sadourny 1985).
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Figure 1. Normalized Lagrangian velocity frequency spectra from oceanic data (continuous line)
and from a numerical simulation on the β-plane (dotted line) for turbulence forced by the baroclinic
instability of a mean vertical shear (see §4). The abscissa corresponds to non-dimensional frequency
νTL and the ordinate is in units of TL.

An important issue in the problem of turbulent transport in the presence of coherent
structures is how to partition the fluid into regions with different dynamical properties
(e.g. Elhmäidi, Provenzale & Babiano 1994). For the physical-space characteristics,
the Lagrangian accelerations of two-dimensional flows have been shown to govern
the topology of turbulent transport of scalars. More specifically, the eigenvalues of
the Lagrangian accelerations gradient tensor provide a criterion for partitioning the
flow into regions with different stirring characteristics (Hua & Klein 1997), where
stirring is defined as the growth of scalar gradients. This work also points out the
central role played by the pressure field in the stirring problem, as already noted by
Basdevant & Philipovitch (1994).

A purpose of the present study is the generalization of the two-dimensional results
about the properties of transport in physical space to the regime of horizontally homo-
geneous geostrophic turbulence. This regime is more relevant to oceanic observations,
by taking into account the effects of a stable density stratification S and planetary
rotation with a meridional gradient in the Coriolis frequency β. The implication of
the density stratification for geostrophic turbulence has been studied by Charney
(1971), Rhines (1979), Herring (1980), Hua & Haidvogel (1986), McWilliams (1989),
and McWilliams, Weiss & Yavneh (1994). The role of the β-effect in geostrophic
turbulence has thus far only been addressed in two-dimensional and shallow-water
flows. This was originally analysed by Rhines (1975), and more recent research on
the β-plane or on the sphere (Maltrud & Vallis 1991; Cho & Polvani 1996) has con-
firmed the possibility of several different flow regimes for balanced dynamics. Strongly
turbulent regimes can exist without excessive levels of anisotropy, and the β-effect
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is known to curb considerably the spatial intermittency of the Eulerian fields when
compared to the f-plane case (McWilliams 1984; Holloway 1986). These moderately
anisotropic, strongly turbulent regimes on a β-plane are addressed in the present
work for fully baroclinic quasi-geostrophic flows. We here will avoid flow regimes
with a strong anisotropy associated with persistent zonal jets (Bartello & Holloway
1991; Panetta 1993), which do not seem relevant for the northwestern Atlantic where
the oceanic data analysed in Rupolo et al. (1996) originate. We also leave aside the
strongly intermittent regime dominated by coherent vortices when β = 0 (McWilliams
et al. 1994).

The questions we address are (i) how different from the purely two-dimensional
regime is the quasi-geostrophic transport behaviour, and (ii) which dynamical degrees
of freedom govern the Lagrangian acceleration?

Since Lagrangian accelerations shape the topology of horizontal stirring locally in
physical space (Hua & Klein 1997), we first evaluate in §2 the degrees of freedom
governing the Lagrangian accelerations of quasi-geostrophic motions. Such dynamics
allow a variation of the primary geostrophic horizontal velocity field in the vertical
direction, and this raises the issue of comparing the quasi-geostrophic transport prop-
erties with those of the two- and three-dimensional cases. We derive in particular the
criterion which should govern the topology of quasi-geostrophic stirring. Numerical
diagnosis of the components of the Lagrangian accelerations is made in §3; they are
found to agree reasonably well with the analytical results derived in the Appendix
based on the Eulerian wavenumber spectra and a quasi-normal statistical hypoth-
esis. Moreover, the spatial distribution of potential vorticity gradients found in the
numerical simulations is compared with the analytical criterion for quasi-geostrophic
stirring of §3. Finally, §4 summarizes the conclusions.

2. Quasi-geostrophic Lagrangian accelerations components
The approach follows closely the strictly two-dimensional treatment of Hua &

Klein (1997) by evaluating the quasi-geostrophic Lagrangian accelerations. For that
purpose, we need approximations of the momentum equations which are compatible
with quasi-geostrophy.

2.1. Momentum equations

The formalism is introduced here for the case of a stratified fluid rotating at a rate of
Ω = f(y)/2 = (f0 + β y)/2, where y designates the meridional direction coordinate.
Quasi-geostrophy theory is based on an expansion in Rossby number R = U/fL� 1
for all variables (Pedlosky 1987), where U and L are characteristic velocity and length
scales. We truncate at first order the horizontal velocity u = (u, v), vertical velocity w
and pressure field p:

(u, w, p) = (u0 +Ru1, w0 +Rw1, p0 +Rp1).

In the following, the symbols ∇ and ∆ = ∇2 only denote horizontal operators. At
zeroth order, the velocity field is purely geostrophic and strictly horizontal with

u0 =
1

ρf0

k × ∇p0, w0 = 0,

where k is the vertical unit vector and ρ is the mean background density. The
dependence of this primary flow upon the vertical coordinate z is simply parametric,
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and depth variations of the horizontal velocity field are mediated through the z-
dependence of the geostrophic streamfunction, ψ0 = p0/ρf0, such that u0 = k ×
∇ψ0(x, y, z, t).

A general property of quasi-geostrophy is that it is an asymptotic theory in which
once the geostrophic streamfunction ψ0 (or p0) is known, then all other quantities
are known in principle; that is, given ψ0 there are diagnositic relations for all other
quantities that involve at most the inversion of spatial differential operators. Our
primary point here is that certain Lagrangian quantities are most directly related to
the ageostrophic Eulerian fields, and in particular the flow field can evolve with time
only via these ‘hidden’ O(R) dynamics, so that it is worth dealing with them explicitly.

We assume that the non-divergent geostrophic flow is entirely absorbed at O(1),
hence the O(R) dynamics need only contain the divergent part of the flow and
the ageostrophic pressure. The ageostrophic velocity field is defined by a divergence
potential χ1 such that

u1 = ∇χ1,
∂w1

∂z
= −∆χ1.

The ageostrophic vertical velocity w1 is related to the displacements of density
isosurfaces

f0 Sw1 = −dg
dt

(∂zψ0), (2.1)

where the operator dg/dt = ∂/∂t + (u0 · ∇) denotes the geostrophic total derivative
and S is the mean stratification parameter. The horizontal Lagrangian accelerations
γL, which also vary parametrically with z, are

γL =
dgu0

dt
= −∇p1 − f0 k × ∇χ1 + βy∇ψ0, (2.2)

where viscous effects are neglected. The quasi-geostrophic accelerations are induced by
the ageostrophic circulation which involves both the pressure field p1 and the three-
dimensional velocity field (u1, w1). An additional term is furthermore induced by
differential rotation (β 6= 0). Comparing (2.2) with the non-rotating two-dimensional
Euler equations in which the gradient of the pressure field p1 totally determines the
Lagrangian accelerations, we see that there are additional terms due to the Coriolis
force induced by the horizontally divergent velocity field u1 and to the β-effect.

Differential rotation effects raise two issues: (i) the inherent anisotropy between the
zonal and meridional direction; (ii) the consistency of a homogeneous representation
of the dynamics in the meridional direction. The first issue is of less concern here,
since we focus on isotropic scalar measures, such as the variance of Lagrangian
acceleration, and leave for future work the introduction of an anisotropic tensorial
representation such as used in McWilliams et al. (1986). For the second issue, we use
periodic lateral boundary conditions as a simple depiction of horizontal homogeneity.
Mathematical consistency requires that we consider only partial differential equations
with spatially periodic coefficients, yet the Coriolis frequency f(y) is non-periodic.
However the quasi-geostrophic potential vorticity equation is well-known to have
spatially uniform coefficients, hence horizontal periodicity for ψ0 and u0 is allowed.
It turns out that the Lagrangian accelerations γL can also be periodic on the β-plane
as seen by rewriting (2.2) as

γL = −∇p̂1 − βψ0j − f0k × ∇χ1, (2.3)
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where j is the unit vector in the meridional direction and with the new variable

p̂1 = p1 − βyψ0.

Besides the periodic field ψ0, the right-hand side of (2.3) involves the two fields p̂1

and χ1 for which horizontal periodicity can also be appropriate as we shall now show
by examining their diagnostic equations.

2.2. Diagnostic equations for accelerations components

The diagnostic equation for p̂1 is obtained by taking the horizontal divergence of
(2.3),

∇2p̂1 = 2Jxy(u0, v0) + βu0. (2.4)

The right-hand side contains no polynomial dependence in y and only involves the
components of the periodic velocity field u0, so that p̂1 can be periodic.

The curl of (2.3) yields the usual quasi-geostrophic potential vorticity equation

dg
dt
q + β∂xψ0 = 0, q =

(
∇2 + ∂z

1

S
∂z

)
ψ0. (2.5)

The diagnostic equation for χ1 is obtained by eliminating the time derivative from
the density and potential vorticity equations, (2.1) and (2.5), leading to(

∇2 + ∂z
1

S
∂z

)
(f0∇2χ1) = −2∂z

1

S
∇ ·Q − β∂z

1

S
∂zv0,

Q = −Jxy(∇ψ0, ∂zψ0),

 (2.6)

where the vector Q of Hoskins, Draghici & Davies (1978) has been introduced. The
right-hand side of (2.6) again does not contain any polynomial dependence and only
involves periodic functions, so that χ1 can also be spatially periodic.

The fields p̂1, ψ0 and χ1 being periodic, the Lagrangian accelerations defined by (2.3)
are also periodic. The presence of the β-term causes many important behaviours such
as suppression of zonal gradients, westward phase propagation, and northwestward
[southwestward] acceleration of cyclonic [anticyclonic] vortices, but it does not prevent
the meridional periodicity of the Lagrangian acceleration.

2.3. A criterion for quasi-geostrophic stirring

A Taylor expansion for the leading-order quasi-geostrophic accelerations of fluid
particles locally in physical space, just as in the two-dimensional case (Hua & Klein,
1997), leads to  ẍ

ÿ
z̈

 = B

 x
y
z

+

 γx(0)
γy(0)

0

 , (2.7)

with a (3× 3) accelerations gradient tensor

B =

 ∂xγx ∂yγx ∂zγx
∂xγy ∂yγy ∂zγy

0 0 0

 , (2.8)

where γL = (γx, γy) and the dot symbol denotes the time derivative following the
geostrophic flow, dg/dt. The vertical component of acceleration is identically zero
because of the hydrostatic assumption underlying quasi-geostrophic dynamics. A
restriction of (2.8) to the case of motions which lie strictly in vertical planes, such as
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(x, z) or (y, z), leads to degenerate dynamics of particle stirring at leading order, but
the stirring problem is non-trivial in a horizontal plane (x, y) at a given vertical level
z. In that case, one finds

∇γL = −[p̂′′1]− I [f0χ
′′
1]− β

[
0 0

∂xψ0 ∂yψ0

]
, (2.9)

where I is the rotation matrix of π/2 in the horizontal plane

I =

[
0 −1
1 0

]
.

When compared to the strictly two-dimensional case (Hua & Klein 1998), besides the
Hessian matrices of p̂1, the accelerations gradient tensor (2.9) involves two additional
terms: the rotated Hessian matrix of χ1 and a term due to the β-effect. Its eigenvalues,
which govern the quasi-geostrophic stirring at a given level z, are given by

λ± = 1
4
W ± 1

2
(σ̇2
n + σ̇2

s − ω̇2)1/2, (2.10)

and the vorticity ω and the normal and shear strain rates, σn, σs, (e.g. Kundu 1990,
p. 56) are

ω = ∂xv0 − ∂yu0 = (∂xx + ∂yy)ψ0,

σn = ∂xu0 − ∂yv0 = −2∂xyψ0,

σs = ∂xv0 + ∂yu0 = (∂xx − ∂yy)ψ0.

More specifically, terms involved in the eigenvalues are

σ̇n = −(∂xx − ∂yy)p̂1 + 2∂xyf0χ1 − βu0,

σ̇s = −2∂xyp̂1 − (∂xx − ∂yy)f0χ1 − βv0,

ω̇ = −(∂xx + ∂yy)f0χ1 − βv0,
1
2
W = −(∂xx + ∂yy)p̂1 + βu0,

 (2.11)

thereby involving both p̂1, χ1 and β. The quantities σ̇s, σ̇n and ω̇ in (2.11) are readily
evaluated by spatial differentiation of the accelerations u̇0 and v̇0. This enables the
physical interpretation of the radicand, which in practice is computed from the
components of the pressure Hessian matrices of p̂1, χ1. Moreover, (2.11) emphasizes
the important role played by the anisotropy between the zonal and meridional
directions in the fields p̂1, χ1, and also induced by the β-effect, for modifying the
strain components along a particle trajectory.

These Lagrangian variations of the strain components are quantitatively important,
and in both the two-dimensional and quasi-geostrophic cases, the topology of stirring
is governed by λ±, which is better than the approximate Okubo–Weiss criterion

λ0 = 1
4
W = 1

4
(σ2 − ω2) = −Jxy(∂xψ, ∂yψ), σ2 = σ2

n + σ2
s , (2.12)

where Jxy denotes the Jacobian operator with respect to the coordinates x, y. The
criterion λ0 is obtained by neglecting the radicand in (2.10), through an assump-
tion of slowly evolving fields (Okubo 1970; Weiss 1991). It has been widely used
to diagnose different dynamical properties of the flow in numerical simulations
(McWilliams 1984; Benzi, Patarnello & Santangelo 1988; Brachet et al. 1988; Elhmad̈i
et al. 1994). However, Basdevant & Philipovitch (1994) have provided numerical ev-
idence that the validity of the assumption of slowly evolving fields is restricted
either to the centre of the vortex cores or to the immediate vicinity of the saddle
points of ψ0. Hua & Klein (1998) have shown that, outside the vortex cores, the
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positive values of λ+ can be three times larger than those of λ0 because of the
dominance of σ̇s and σ̇n. Furthermore, these Lagrangian variations of the strain
are associated with large spatial scales which are far-reaching outside the vortex
cores (Hua & Klein 1998), and this is mediated through the non-local interac-
tions associated with the pressure for an incompressible fluid (Ohkitani & Kishiba
1995).

The ageostrophic pressure field p̂1 has been found in Hua & Klein (1998) to
be the key quantity, and the role of λ0 is merely to force its patterns, since λ0

appears in the right-hand side of the diagnostic equation (2.4) for p̂1. λ0 can be
interpreted as being the generalized centrifugal force divergence, since it corresponds
to the divergence of the horizontal accelerations. From (2.12), we can also recognize λ0

as proportional to the nonlinear correction to the geostrophic balance that makes the
gradient-wind balance relation such an accurate approximation for slowly evolving,
large-scale motions in the ocean and atmosphere. It is therefore akin to the Lighthill
theory of sound generation from a turbulent source (Lighthill 1978). The quadrupole
geometry which is forced by Lighthill’s source term in the case of an isolated vortex
prevails also in some regions of the numerical results for p̂1 reported in §3: this is
because λ0 implies second derivatives of ψ0 through the Hessian determinant of the
streamfunction:

− λ0 =

∣∣∣∣∣ ∂xxψ0 ∂xyψ0

∂xxψ0 ∂yyψ0

∣∣∣∣∣ =
∣∣∣ψ′′0∣∣∣ . (2.13)

We have thus generalized to the quasi-geostrophic case the evidence of the central
roles played by the Hessian matrices of the pressure field (p̂1) and of the divergence
potential χ1, and β∇ψ0 as shown by (2.9), instead of merely λ0, the determinant of
the Hessian of the streamfunction field ψ0.

2.4. Three-dimensional topology of stirring and distribution of tracer gradients

Quasi-geostrophic stirring is entirely described by p̂1, χ1 and the β-effect term. The
p̂1 and χ1 fields have depth variations which are not independent, since both fields
determine the three-dimensional ageostrophic circulation necessary to maintain the
instantaneous thermal wind balance of the zeroth-order flow (Davies-Jones 1991).
Their depth variations cause in turn those of the quasi-geostrophic stirring through
(2.10) and (2.11). However, as a consequence of the degenerate character of the (3×3)
accelerations gradient tensor B defined in (2.8), the vertical distribution of stirring
properties is strongly constrained by the horizontal distribution, as will be elaborated
below.

Denoting by θ(x, y, z) a tracer field such that

dg
dt
θ = 0,

the three-dimensional tracer gradient equation can be written

d2
g

dt2
∇3θ = M∇3θ, (2.14)

where the ∇3 operator is ∇3 = (∂x, ∂y, ∂z). One expects that the properties of the
matrix M govern the spatial distribution of the tracer gradient. M is related to both
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the velocity gradient tensor

A =

 ∂xu0 ∂yu0 ∂zu0

∂xv0 ∂yv0 ∂zv0

0 0 0


and the (3× 3) accelerations gradient tensor B through

M = 2A∗2 − B∗ = 2

 −Jxy(u0, v0) 0 0

0 −Jxy(u0, v0) 0

Jyz(u0, v0) Jzx(u0, v0) 0

−
 ∂xγx ∂xγy 0

∂yγx ∂yγy 0

∂zγx ∂zγy 0

 , (2.15)

where the ∗ symbol denotes the transpose of a tensor.
Using the relations between the Jacobian terms which appear in (2.15) with ∇ · γL

and k · ∇× γL,

−2Jxy(u0, v0) = −∂x
(

dg
dt
∂yψ0

)
+ ∂y

(
dg
dt
∂xψ0

)
= ∂xγx + ∂yγy

= ∇ · γL,

−2Jyz(u0, v0) = ∂z

(
dg
dt
∂yψ0

)
− ∂y

(
dg
dt
∂zψ0

)
= −∂zγx − Sf0∂yw1

= −∂zγx − S∂y
[∫

(k · ∇× γL + βv0)dz

]
,

−2Jzx(u0, v0) = −∂z
(

dg
dt
∂xψ0

)
+ ∂x

(
dg
dt
∂zψ0

)
= −∂zγy + Sf0∂xw1

= −∂zγy + S∂x

[∫
(k · ∇× γL + βv0)dz

]
,



(2.16)

M can be expressed entirely in terms of accelerations gradient and of the β-effect
through

M =


∂yγy −∂xγy 0

−∂yγx ∂xγx 0

+S∂y

[∫
(k · ∇× γL + βv0)dz

]
−S∂x

[∫
(k · ∇× γL + βv0)dz

]
0

 . (2.17)

There have been numerous studies of the invariants of the velocity gradient tensor
A in the literature, as a means to identify remarkable features of the turbulence, both
in fully three-dimensional turbulence (e.g. Chong, Perry & Cantwell 1990) and also
in two-dimensional turbulence (in that case, the Okubo–Weiss quantity is simply the
double eigenvalue of A2). In contrast, we see here from (2.17) that M involves the
accelerations gradient, and also the presence of the βv0 term.

For the strictly two-dimensional case, the (2 × 2) matrix obtained from the first
two columns and rows of M in (2.15), has the same eigenvalues as [∇γL] but with
their relative order interchanged (Hua & Klein 1998). This corresponds to the usual
result that in the spatial direction where particle separation increases most rapidly
(positive values of λ+), the tracer gradient will decrease in amplitude, and conversely,
for the spatial direction for which particle separation decreases the most rapidly
the tracer gradient amplitude will increase. These two-dimensional results are also
valid for the quasi-geostrophic case at a given level z, and the λ± are expected to
determine the horizontal distribution of tracer gradients. We shall test this conjecture
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by comparing gradients of potential vorticity (which is an active tracer field whose
distribution influences the velocity field) diagnosed in numerical simulations, with the
quasi-geostrophic criterion for mixing provided by λ± in §3.

In the three-dimensional quasi-geostrophic case, equations (2.14) and (2.17) reveal
that the variations along the z-coordinate of the distribution of tracer gradient are
related to the horizontal tracer gradient. The vertical tracer gradient ∂zθ is entirely
determined by the horizontal gradient ∇θ, thereby making explicit the degenerate
character of the vertical distribution of stirring properties,

d2
g

dt2
∂zθ = −Sk ·

[
∇
(∫

(k · ∇× γL + βv0)dz

)
× ∇θ

]
. (2.18)

The reverse is not true, in that ∇θ does not depend upon ∂zθ (Klein, Tréguier & Hua
1998; Haynes & Anglade 1997).

Another approach for studying the three-dimensional distribution of properties in
quasi-geostrophic flows has been based on the C -vector introduced by Xu (1992). C
is defined as the three-dimensional torque exerted upon the primary geostrophic flow
by the secondary ageostrophic circulation,†

2C = −∇3 ×
dg
dt
∇3ψ0, (2.19)

so that

C ≡ (C1, C2, C3) = −
(
Jyz, Jzx, Jxy

)
(u0, v0), (2.20)

and its horizontal component (CH = (C1, C2) = Q × k) and vertical one (C3 = λ0)
are respectively related to the Q-vector and to the Okubo–Weiss criterion (Xu 1992).
Equations (2.15) and (2.16) also make explicit the relations between the C -vector and
the components of A∗2, as well as its expression in terms of ∇ · γL and k · ∇× γL.

However, the matrix M , which we conjecture to determine the three-dimensional
topology of tracer gradients, cannot be expressed simply in terms of the C -vector and
the role of the latter is in providing the orientation of the Lagrangian rate of change
of the three-dimensional tracer gradient through

C · dg
dt
∇3θ = 0. (2.21)

The last relation can be obtained from

dg
dt
∇3θ = −A∗∇3θ,

C1∂xu0 + C2∂yu0 + C3∂zu0 = 0,

C1∂xv0 + C2∂yv0 + C3∂zv0 = 0.

 (2.22)

Thus in the same manner as the eigenvalue λ0 differs from λ±, the information
contained in the C -vector differs from that contained in M: the set, λ0 and C , appears
in a first order-in-time differential equation, e.g. (2.22), and involves the velocity
gradient tensor A, while the other set, λ± and M , appears in a second order in
time differential equation, e.g. (2.14), and involves the accelerations gradient tensor
B = ∇3γL. Our main presumption is that the second-order-in-time equation is more
likely to capture the topology of local turbulent transport properties, because it takes
into account the variations in inertia along the Lagrangian particle trajectories, and
more specifically the variations of the strain rate components.

† Our definition of C slightly differs from Xu (1992) by not including the β-term for simplification.
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In summary, the main results of this section have been to motivate analytically the
plausible importance of the accelerations gradient tensor in determining the topology
of tracer gradients, and in documenting the differences expected between the properties
of velocity gradient and accelerations gradient tensors for quasi-geostrophic flows.

3. Numerical diagnosis of accelerations components
Eulerian numerical simulations were performed with the spectral code reported in

Hua & Haidvogel (1986, referred to as HH86 hereafter), solving the quasi-geostrophic
potential vorticity equation (2.5) for a statistical equilibrium solution in the presence
of forcing and damping. As in HH86 the forcing mechanism is provided by the
baroclinic instability of a vertically sheared zonal mean flow ψ0 = −u0(z)y. Damping
corresponds to a bottom friction through an Ekman layer and hyperviscosity is used
as an enstrophy remover. Boundary conditions for the vertical structure are rigid lids
at top (z = 0) and bottom (z = −1). The background stratification S corresponds
to the exponential Brunt–Väisälä profile of HH86 (their figure 1b), which implies a
zero-crossing of the first baroclinic mode around z = −0.3. The numerical simulations
which are reported correspond to a resolution of 2562 grid points in the horizontal, 8
layers in the vertical and the doubly periodic domain spans 7×2π radii of deformation
of the first baroclinic mode. The domain size is chosen as 2π in non-dimensional units
and this sets the length scale, while the inverse time scale is set by the imposed mean
vertical shear, and corresponds to typical midlatitude oceanic regimes as in HH86.

The numerical results are analysed both for the statistics at a given level z as well
as the depth dependence of the components of the acceleration, p̂1, χ1, and βψ0.

3.1. Level-wise diagnostics

Fields of ψ0 and potential vorticity q are given in figures 2(a) and 2(b) at a given
vertical level z, revealing marked frontal structures in the potential vorticity field,
which tend to display an overall zonal orientation due to the β-effect.

Let us consider for a moment the case of geostrophic turbulence on an f-plane
where differential rotation effects are neglected (β = 0). For horizontally homogeneous
turbulence,

〈∇p1 · (k × ∇χ1)〉 = 0, (3.1)

where 〈 〉 designates a horizontal spatial average. Consequently,

〈|γL|2〉 = 〈|∇p1|2〉+ f2
0〈|∇χ1|2〉, (3.2)

and the variance of Lagrangian accelerations is the sum of two degrees of freedom
which are spatially orthogonal and which come respectively from the ageostrophic
pressure and divergence field.

Fields of ageostrophic p̂1 and χ1 (with β 6= 0) are shown in figures 2(c) and 2(d).
Locally organized structures can be identified in both fields, e.g. a quadrupole pattern
is present in the upper left corner of both fields, with a rotation of nearly π/2 between
the two quantities. (For β = 0, this angle is exactly π/2 as shown by (3.1).) Both
the similarity of the spatial patterns and their relative angle are due to the phase
relationship between the two quantities p̂1 and χ1 which is implied by (3.1). Moreover,
a tripole pattern is also present in the lower left corner of figure 2(c). In fact,
quadrupole and tripole patterns correspond to what Lighthill (1978) calls lateral and
longitudinal quadrupoles respectively. The former are forced by extra-diagonal terms
of the second-derivative matrix in (2.13), while tripoles are forced by diagonal terms of
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(a) (b)

(c) (d)

Figure 2. Fields of geostrophic streamfunction ψ0 (a), potential vorticity q (b), ageostrophic pressure
p1 (c), and divergence potential χ1 (d), at the top of the water column for an exponential stratification
profile. Contour levels in non-dimensional units are respectively 0.2, 10, 2 and 1.

the matrix. Polvani et al. (1994) reported cases of dominance of dipoles caused by the
mutual advection of elliptically deformed eddies in numerical simulations of shallow
water with a finite radius of deformation, although we see fewer such structures in our
quasi-geostrophic simulations; however, because they used a formalism for the wave
generation equation that was one differential order higher in time than Lighthill’s, a
direct comparison of the source patterns is difficult, although we do not believe that
our present results are qualitatively different on this issue.

A strong skewness is present in the pressure field, with positive areas of weaker
amplitude than negative ones, the negative extremum being roughly twice the positive
one. One can show that the skewness of the probability distribution of pressure is
induced by the skewness of the distribution of W through (2.4). [Since W is a bilinear
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Figure 3. (a) Spectra of |∇p| (continuous), |∇χ| (dotted line), βψ0 (long/short-dashed) and of |γL|
(starred) at the top of the water column for a variable stratification profile. (b) Spectra of |γL|
(starred) and of the analytical estimate (A8) (dotted)

quadratic form of vorticity and strain, it has an exponential, skewed distribution even
in the case of a joint-normal distribution of the vorticity and strain components (Hua
1994). This skewness is due to differences in the geometry of the strain and vorticity
fields, which are on average spatially orthogonal and have the same variance, yet
strain posesses two degrees of freedom while vorticity has only one. In both two
and three dimensions and also for quasi-geostrophic dynamics, the pressure field is
diagnostically related to the distribution of strain and vorticity through (2.4) and
that implies that the skewness in the probability distribution of W will carry over
to the the probability distribution of pressure p̂1 (Holzer & Siggia 1993; Hua 1994)].
Values found for the skewness of p̂1 vary in time between −1 and −2, while the
divergence potential χ1 has a skewness which does not exceed −0.3 in the simulation
of figure 2. We have performed a number of other numerical simulations varying
both the stratification S(z) and the forcing and sink amplitudes, and this marked
discrepancy in the skewness of p̂1 and χ1 is robust.

The spectra of the accelerations components ∇p̂1, ∇χ1, and βψ0 along with the
total spectrum of γL are given in figure 3(a). The largest contribution by far in
|γL| is due to the ∇p̂1 term and its spectral characteristics are well-captured by the
quasi-normal approximation (A 8) detailed in the Appendix which is also plotted in
figure 3(b), which shows that the total accelerations field has an inertial spectrum slope
which is identical to the geostrophic velocity field |u0| inertial slope (for horizontal
wavenumbers such that k > 7), consistently with (A 8). This result grants the property
that the Lagrangian accelerations are governed by the large and intermediate spatial
scales of the flow.

Moreover, the variance of the pressure gradient is given by (see Appendix)

〈|∇p̂1|2〉 ≈
(

3
4
Z(z) + 6β2E(z)

Z(z)

)
E(z), (3.3)

where E and Z designate respectively the kinetic energy and relative enstrophy at
a given level z. The first term in (3.3) is the dominant one in the upper part of the
water column for a solution with a moderate influence of the β-term (see the next
subsection). Relation (3.3), when combined with (1.1), illustrates the considerably
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shorter time scale, (〈|∇p̂1|2〉/E)−1/2 ∝ Z(z)−1/2, linked to a relative enstrophy time
scale, which is associated with an immediate reorientation of structures under straining
deformation effects. Such a time scale is much shorter than the advective time scale
of the energy-containing eddy structures, 1/k0E

1/2, where k0 is the wavenumber of the
kinetic energy spectrum maximum. Relation (3.3), with β set to zero, is similar to the
results of Babiano et al. (1987) and Larchevêque (1990) except for a constant factor
of respectively 4 and 2 for the constant term multiplying Z in (3.3). The discrepancy
arises because of the assumptions of Gaussian shapes for time and space covariances
made by Babiano et al. and the closure-theory inertial-range spectrum assumption of
k−3 made by Larchevêque.

3.2. Local topology of stirring

The purpose of this subsection is to test the topology of stirring as predicted, on the
one hand by the positive values of the eigenvalues λ+ and λ0 defined in (2.10), with
on the other hand the distribution of the gradient of the active tracer represented by
potential vorticity q.

Figure 4 illustrates the comparison between these quantities at a given level z.
The |∇q| field is extremely filamentary and displays a tendency for zonal alignment,
because of the β-effect. Extrema in gradients of potential vorticity have been studied
as being dynamical barriers to transport and mixing (e.g. McIntyre 1989; Bowman
& Chen 1994). We see on figure 4(b) that the locations of these extrema match well
with those of the positive extrema of λ+, and that almost all the main features of
|∇q| are also present in figure 4(b). On the other hand, the Okubo–Weiss criterion λ0,
positive values of which are shown on figure 4(c), matches less well with figure 4(a).
The correlation between |∇q| and positive λ+ is 0.21, that between |∇q| and positive
λ0 is 0.12 and that between |∇q| and positive λ− is 6 10−4. These values of the direct
correlations, while favouring λ+, are of weak magnitude. However if one correlates
instead the areas of the regions where the various quantities are larger than a given
threshold value (chosen as the contour intervals listed in the caption of figure 4), then
the respective correlations are 0.70, 0.44 and 0.03. These results therefore support the
statement that the properties of the accelerations gradient tensor – as diagnosed by
λ+ – capture more accurately the location in physical space of the high gradients of
potential vorticity than the properties of the velocity gradient tensor – as diagnosed
by λ0.

The criteria λ+ and λ0 differ by the radicand term in (2.10) which involves the
Lagrangian variation of the strain rate, and the above results confirm its quantitative
importance in the topology of stirring. As pointed out by one of the referees, the
Okubo–Weiss criterion λ0 only takes into account the instantaneous strain, rather
than the strain averaged along trajectories. The difference between figures 4(b) and
4(c) indicates that the strain in 4(c) is ‘advected out’ along trajectories, manifesting
the non-local influence of σ̇n and σ̇s on tracer gradients. High gradients can thus
be created by processing tracer through a small localized high-strain region, and
our analytical approach is somewhat akin to a short-term trajectory calculation,
where we solve the flow evolution equations by Taylor series, over a short time
(see also Ohkitani & Kishiba 1995). The information which is obtained here with
a completely diagnostic method could in principle also be obtained by computing
short-term Lyapunov exponents (Pierrehumbert & Yang 1993), which do require
however knowledge of the flow field at different time steps.

The tracer amplification problem at a given level z for the original (first order in
Taylor series) problem involves (dg/dt)∇θ and has two roots, while the second-order
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(a) (b)

(c) (d)

Figure 4. Fields of |∇q| (a), and of the positive values of λ+ (b), λ0 (c), and λ− (d), at the same
level z as in figure 2. Contour levels in non-dimensional units are 650 for (a) and 150 for (b–d).

problem involving (d2
g/dt

2)∇θ has four roots. The four initial scalar conditions which
are needed in the latter case correspond to ∇θ(t=0) and (dg/dt)∇θ(t=0), where the last
conditions are obtained by using the the first-order equation with ∇θ(t=0). Therefore
only two independent initial conditions are sufficient for the two-dimensional ad-
vection problem at any order. Moreover, the tracer gradient ∇θ at a given point is
a linear combination of the appropriate set of eigenvectors for the problem under
consideration. Basically, the largest positive eigenvalue is the relevant root if a growth
of the tracer gradient is to be expected, and that root will dominate quantitatively if
and only if the tracer gradient is nearly aligned with the associated eigenvector. The
results of the numerical simulations suggest that high gradients of tracer match better
with regions of high positive λ+, and this implies that locally ∇θ is nearly colinear to
the λ+ eigenvector. We are at present pursuing this line of investigation.
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Figure 5. (a) Vertical profiles of the variance of the Lagrangian accelerations components:
〈|∇p1|2〉/E (continuous line, numerical results; starred, analytical estimate (A5)), 〈|∇χ|2〉/E
(dash-dotted line), and 〈|βψ0|2〉/E (dotted). (b) Vertical profile of the total variance of the La-
grangian accelerations 〈|γL|2〉/E (continuous), 〈q2〉 (dash-dotted) and E (dotted). All quantities in
(b) are normalized by their value at z = 0.

We have diagnosed the various terms of (2.11) in the numerical simulations and
found a robust overwhelming preponderance of the terms involving p̂1 over those
involving either χ1 or β, by at least a factor of 10. We therefore conclude that the
role of β in the tracer transport, which is clearly seen through the tendency for
zonal alignment in figure 4, is mediated indirectly through the influence of β on the
characteristics of the ageostrophic pressure field p̂1 itself.

3.3. Vertical structure

The aim of this subsection is to document the vertical structure of the three com-
ponents of accelerations (2.3), and results concerning the diagnosis of vertical tracer
gradients will be reported elsewhere.

Figure 5(a) displays the vertical profiles of the variance of acceleration components.
All our numerical simulations of forced turbulence present a strong dominance of the
|∇p̂1| component with respect to the other two in the upper part of the water column.
We have overlayed on the same graph the analytical prediction for |∇p̂1|2, given by
(3.3), and we see a close correspondence with the numerical simulations. Except near
the surface, |∇χ1|2 remains small. The β-term presents a strong barotropic (nearly
depth-independent) influence on the acceleration, and can become the dominant term
below z = −0.3 as seen on figure 5(a).

While the analytical formula developed in the Appendix for |∇p̂1|2 is robust, and
has also been verified in numerical simulations of freely decaying quasi-geostrophic
turbulence, the variance of the |∇χ1|2 term has been found to be dependent both
on the details of the forcing and damping (in particular with respect to the vertical
dependence of the prescribed u0(z) of the mean baroclinically unstable flow) and
also on the depth variation of the stratification parameter S . These results can be a
posteriori rationalized by examining the right-hand side of the diagnostic equations
defining p̂1 and χ1. We see that the right-hand of (2.4) is completely independent of
the existence of a variable stratification S and of a mean streamfunction field such
as ψ0 = −u0(z)y, while this is not so for the right-hand side of (2.6). Figure 5(b)
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shows the total variance of 〈|γL|2〉/E (continuous line), confirming its dominance
by the pressure term above z = −0.3 (i.e. in the thermocline), and a substantial
degree of compensation between the three acceleration components below that level.
In this specific simulation, this is caused by the weak stratification value below the
thermocline (z = −0.3). We have also plotted vertical profiles of the variance of
potential vorticity and of kinetic energy on the same graph.

Other numerical simulations performed with different profiles of S have confirmed
its preponderant influence on the vertical structure below the thermocline of quantities
such as those plotted in figure 5.

4. Conclusion
We have identified the different degrees of freedom for the Lagrangian accelerations

for geostrophic turbulence associated, respectively, with the ageostrophic pressure gra-
dient, the divergence potential gradient, and the β-effect term. Numerical simulations
have revealed the dominant role played by the ageostrophic pressure component.

For the global statistics in Fourier space, we have documented the steepness
of the Lagrangian accelerations horizontal wavenumber spectrum for equilibrium
geostrophic turbulence, and confirmed the robustness of the analytical (quasi-normal)
estimates. The Lagrangian accelerations display an inertial slope in horizontal wave-
number which is very similar to that of the horizontal velocity field. In frequency
space, an important property of the Lagrangian velocity spectrum is its steepness,
leading to a preponderant role of the lowest and intermediate frequencies of motion
in dispersion and stirring.

The local properties in physical space are governed by the accelerations gradient
tensor, whose eigenvalues provide a criterion to partition the flow into regions with
different stirring dynamics. This criterion underlines the quantitative importance of
the Lagrangian variation of the strain rate along a particle trajectory, in addition
to the role played by the instantaneous strain rate stressed by previous studies (e.g.
Okubo 1970; Weiss 1991; Mariotti, Legras & Dritschel 1994). Our approach takes
into account the short time variations of the flow captured by the acceleration terms
and thus amounts to solving the flow evolution equations by a Taylor series, over
a short time (Ohkitani & Kishiba 1995). In a given horizontal plane, numerical
simulations confirm that the maxima of the positive eigenvalue of the accelerations
gradient tensor enable the extrema in the potential vorticity gradient to be located
accurately. The vertical distribution of tracer gradients is entirely constrained by the
horizontal one, while the reverse is not true so that the three-dimensional distribution
of quasi-geostrophic stirring is degenerate. We have made explicit analytically how
the tensor M which governs the three-dimensional tracer gradient entirely depends
on the three-dimensional Lagrangian accelerations gradient tensor.

The role of the β-effect on the Lagrangian accelerations, besides the usual well-
known propagation effects, is to introduce a meridional component in the accelera-
tions; β plays a non-negligible role in the anisotropy of the tracer transport geometry
through its influence on the ageostrophic pressure field geometry.

We have not addressed in the present paper regimes of strong intermittency, which
would be favoured by smaller β values than the typical midlatitude oceanic regimes
reported here. We expect that the analytical considerations of §3 concerning the topol-
ogy of stirring would still hold in that case. What needs to be assessed quantitatively
in the case of strong intermittency is the steepness of both the wavenumber and
frequency spectra of Lagrangian accelerations.
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Appendix A. Quasi-normal estimate of the ageostrophic pressure
wavenumber spectrum

We detail here the formalism leading to the estimate of the spectral characteristics
of the ageostrophic pressure p̂1:

∇2p̂1 = 2Jxy(u0, v0) + βu0 = − 1
2
W + βu0. (A 1)

At a given level z, the covariance function of variable X versus the horizontal lag r
is related to its wavenumber spectrum through

BXX(r, z) =
1

2π

∫ ∫
exp−ik·r SX(k, z)dk,

where k = (k, φ) and r = (r, θ) in polar coordinates in Fourier and physical lag
space respectively. In the case of X ≡ ψ0, if we retain only the horizontally isotropic
contribution of the streamfunction spectrum, we have found that the following
analytical shape suitably fits the forced-damped numerical solutions of HH86:

kSψ0
(k, z) =

15E(z)a3k

(a2 + k2)7/2
, (A 2)

where E(z) is the kinetic energy spectrum at a given vertical level z. Such a choice
for Sψ0

corresponds to a k−4 kinetic energy spectrum power-law behaviour in the
enstrophy inertial range and it implies that the covariance function for ψ0 is

Bψ0ψ0
(r, z) =

∫ ∞
0

Sψ(k)J0(kr) rdr = 12
E2(z)

Z(z)
e−r̃(1 + r̃ + 1

3
r̃2),

where the relative enstrophy at that same level z is Z(z) = 4a2E(z1/2) (as implied by
(A 2)), and we have introduced the non-dimensional lag r̃ = 1

2
(Z/E) r.

We have checked in our numerical simulations that the term involving β on the
right-hand side of (A 1) is little correlated with the nonlinear term W , so that the
covariance of the Laplacian of ∇2p̂1 versus spatial lag r is well approximated by†

B∆p̂1∆p̂1
(r) ≈ 1

4
BWW (r) + β2 Bu0u0

(r).

We have

BWW (r) = [Bσ2σ2 (r) + Bω2ω2 (r)− 2Bσ2ω2 (r)] . (A 3)

The quasi-normal evaluation of (A 3) for non-zero lag r yields

BWW (r) = 2
[
B2
σnσn

(r) + B2
σsσs

(r) + B2
ωω(r) + 2B2

σnσs
(r)− 2B2

σnω
(r)− 2B2

σsω
(r)
]

+B2
σnσn

(0) + B2
σsσs

(0) + B2
ωω(0)

+2Bσnσn(0)Bσsσs(0)− 2Bσnσn(0)Bωω(0)− 2Bσsσs(0)Bωω(0).

† All quantities are defined at a given level z, but for notational convenience, the z-dependence
of the covariance function is omitted in the following.
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The spatial homogeneity of the turbulence implies that 〈σ2〉 = 〈ω2〉. Since the
components of strain and vorticity are all mutually statistically orthogonal, the
spatial homogeneity moreover yields

Bσnσn(0) = Bσsσs(0) = 1
2
Bωω(0) = Z,

so that

BWW (0) = 12Z2,

BWW (r) = 2
[
B2
ωω(r) + B2

σnσn
(r) + B2

σsσs
(r)
]

+ B2
σnσs

(r)− B2
σnω

(r)− B2
σsω

(r).

Using the rotation symmetries in polar coordinates of the operators which are involved
in the expression the strain components σn, σs and in the vorticity ω, yields

Bωω(r) =

∫ ∞
0

k4 Sψ(k)J0(kr),

Bσnσn(r) + Bσsσs(r) = Bωω(r),

Bσnσn(r)− Bσsσs(r) =
1

2π

∫ ∫
exp−ik·r k4 cos(4φ)Sψ(k)dk

=

[∫ ∞
0

k4 Sψ(k)J4(kr)

]
cos(4θ),

2Bσnσs(r) =
1

2π

∫ ∫
exp−ik·r k4 sin(4φ)Sψ(k)dk

=

[∫ ∞
0

k4 Sψ(k)J4(kr)

]
sin(4θ),

Bσnω(r) =
1

2π

∫ ∫
exp−ik·r k4 sin(2φ)Sψ(k)dk

=

[
−
∫ ∞

0

k4 Sψ(k)J2(kr)

]
sin(2θ),

Bσsω(r) =
1

2π

∫ ∫
exp−ik·r k4 cos(2φ)Sψ(k)dk

=

[
−
∫ ∞

0

k4 Sψ(k)J2(kr)

]
cos(2θ).

This allows a considerable simplification of the covariance of pressure Laplacian
which is exactly isotropic versus spatial lag r:

BWW (r)

16Z2
=
[

3
4
F2

0(r) + 1
4
F2

4(r)−F2
2(r)
]
,

denoting by Fn the transform

Fn(r) =
1

2Z

∫ ∞
0

k4Sψ(k)Jn(kr) kdk, n = 0, 2, 4,

where Jn is the Bessel function of order n. This leads to

1

12Z2
BWW (r̃) =

1

2Z
Bωω(2r̃), (A 4)

with

Bωω(r̃) = 2Z e−r̃ (1− 7
8
r̃ + 1

8
r̃2).
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This relation between the covariance functions of W and ω implies that their
spectra verify

SW (k) = 3
2
Z(z) Sω ( 1

2
k).

The spectra of W and relative vorticity ω = ∇2ψ0 are thus similar in their power-law
behaviours, both at small and large scales, the spectral peak of W being at twice
that of relative vorticity. Similar results had also been found by Larchevêque (1990)
for two-dimensional turbulence, assuming a self-similar inertial-range spectrum. Our
results here concern a spectrum shape, which is appropriate for a case of forced-
damped turbulence. We note that Larchevêque (1990) has proved that an Eddy-
Damped Quasi-Normal Markovian closure yields exactly the same results as a more
simple quasi-normal treatment, thereby motivating our choice of the latter.

The spectrum of ∆p̂1 is therefore

S∆p̂1
(k) ≈ 3

8
Z(z) Sω ( 1

2
k) + β2Su0

(k). (A 5)

The spectrum of ∇p̂1

S|∇p̂1| (k) ≈ 3
32
Z S|u0| (

1
2
k) + 1

2
β2Sψ0

(k), (A 6)

is also similar to that of |u0|, because of the dominance of the first term and its
variance is given by

〈|∇p̂1|2〉 ≈
(

3
4
Z(z) + 6β2E(z)

Z(z)

)
E(z). (A 7)

Finally, the total spectrum of γL is well approximated by

S|γL| (k) ≈
3
32
Z S|u0| (

1
2
k) + 3

2
β2Sψ0

(k). (A 8)
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